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Abstract

It is very important to estimate the mass flow rate of possible accidental releases from the gas
pipeline, in order to perform the hazard analysis or the risk based management in the gas facilities.
This paper presents a simplified model to estimate the release rate from a hole on the high-pressure
gas pipeline. It consists of a correction factor accounting for the pressure drop through pipeline
due to the wall friction loss, and the release rate without friction loss. The model, whatever kind of
gas may be considered, has some positive deviation from the theoretical complex equations, and it
ranges from about 0 up to 20%. The deviation will reduce to zero, as the release point approaches to
the reservoir. It increases with the specific heat ratio of gas and the dimensionless hole-size which is
the effective area of the hole divided by the cross-sectional area of the pipe. The model is compared
with damage areas of real accidents with success. It overestimates the release rate slightly and may
be a useful tool to estimate the release rate quickly in performing the hazard analysis or the risk
based management in the gas facilities.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The physical process involved in the emission of many hazardous gases is very complex,
and some cases are not very well understood. In a real flow situation, the frictional force is
present and may have a decisive effect on the resultant flow characteristics. The inclusion
of the friction term in the equation of motion makes the flow analysis far more complex.
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Nomenclature

a sonic velocity (m/s)
Ah hole area (m2)
Ap cross-sectional area of pipeline (m2)
cp specific heat capacity at the constant pressure (J/(kg K))
CD discharge coefficient
d diameter of pipeline (m)
fF Fanning friction factor
h enthalpy (J/kg)
L length of pipeline (m)
L̄ dimensionless length of pipeline scaled with friction factor
M Mach number
Mw molecular weight of gas (kg/mol)
p pressure inside the pipeline (N/m2)
p0 pressure at reservoir (N/m2)
pa atmospheric pressure (N/m2)
pt stagnation pressure (N/m2)
Q mass flow rate (kg/s)
Q|L=0 mass flow rate without friction loss through pipeline (kg/s)
Q̄ dimensionless mass flow rate
Qh mass flow rate through hole (kg/s)
Qn mass flow rate through nozzle (kg/s)
Qp mass flow rate in pipeline (kg/s)
R gas constant (N m/(K mol))
Re Reynolds number
T temperature (K)
Tt stagnation temperature (K)
cv specific heat capacity at the constant volume (J/(kg K))
u gas velocity (m/s)

Greek letters
α dimensionless hole-size;AhCD/Ap
γ specific heat ratio
ε wall roughness of pipeline (m)
ε1 length of nozzle (m)
ε2 path length through hole (m)
η parameter
ρ gas density (kg/m3)
τ f shear stress due to the wall friction (N/m2)
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It is the subject of continuing research by engineers, physicists, and more recently, those
studying the non-linear dynamic systems[1,2]. The first step in any hazard analysis is the
characterization of the potential gas release. Most of the sophisticated dispersion models,
the fire models, and the explosion models available for the hazard analysis are of little
use unless the specifics of the release can be fairly well defined[3]. For the purpose of
the hazard analysis, several formulas of release rate offer the approximate solutions of
specified conditions[4,5]. They provide the useful information for determining quickly
the consequences of an accident by hand calculator, including the rate of release and the
total quantity of gas released. This information is valuable for evaluating the safety of
existing processes or new process designs, and improving the safety of process. But there
seems to be no simple model to calculate the release rate quickly from a hole on the gas
pipeline.

In the transport of the natural gas at high pressure through the pipeline, greater care is taken
to design and maintain the installations associated with pipeline to ensure their safe operation
[1]. The pipeline may cross through both rural and heavily populated areas. Rupture of the
pipeline can lead to the various outcomes, some of which can pose a significant damage to
the people and the properties in the immediate vicinity of the failure location. Hazard area
associated with the high-pressure natural gas pipeline is directly proportional to the square
root of the release rate[6].

Some developments and modifications of the theoretical complex equations are required
to make a simplified model for calculating explicitly the release rate from a hole on the
high-pressure gas pipeline. There exists always some uncertainty, since the physical prop-
erties of the materials are not adequately characterized, or the physical processes themselves
are not completely understood. The release rate is strongly dependent of the scale of the
physical processes involved. Some researchers studied them by the full scale experiments
[7]. In the development of a simple model, it should be considered conservatively to ensure
safety.

The purpose of this paper is to propose a simple release model that is appropriate in the
high-pressure transmission pipeline, and to validate the model with the full scale experiments
and the consequences of real accidents.

2. Equations for release rate

Consider a pipeline connected by a converging nozzle, with the flow provided by a
reservoir at pressurep0 and releasing from a hole on the pipeline as shown inFig. 1. The
subscript t represents the stagnation conditions. For the high flow rate, it is usually valid
to assume the isentropic flow in the nozzle and the hole with the adiabatic flow along the
pipeline. The lengths of the nozzle and the hole (ε1, ε2) are very small compared with the
pipe length. Therefore, the friction loss through the nozzle and the hole are small enough
to be ignored, compared with total friction loss. Most of the buried gas pipelines are coated
with low conductive polyethylene for corrosion protection.

The mass release rate can be estimated by using the static or stagnation pressure of
the moving gas. The static pressure along the pipeline is shown inFig. 2 as well as the
stagnation pressure. The static pressure of the moving gas is the property experienced



34 Y.-D. Jo, B.J. Ahn / Journal of Hazardous Materials A97 (2003) 31–46

Fig. 1. The system under study.

by an observer moving at the same velocity with the gas. The stagnation pressure is the
property experienced by a fixed observer, with the gas having been brought to the rest at
him.

2.1. Flow rate through nozzle

Assuming the isentropic flow, energy balance through the nozzle can be expressed as
following [8]:∫ p1

p0

δp

ρ
+ 1

2
(u2

1 − u2
0) = 0 (1)

Fig. 2. Pressure drop through pipeline length (subscript t: stagnation conditions).
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whereρ is the gas density,u the gas velocity, andp is the static pressure. Subscript 0 denotes
the property at the reservoir, and subscript 1 denotes the property in the pipeline just after
leaving the reservoir, i.e. in the nozzle. The gas velocity at the reservoir is zero.

For the isentropic expansion of a perfect gas, density and temperature may be described
as follows[9]:

ρ = ρ0

(
p

p0

)1/γ

(2)

T = T0

(
p

p0

)(γ−1)/γ

(3)

By integratingEq. (1), the velocity at nozzle is given:

u2
1 = 2

γ

γ − 1

p0

ρ0

(
1 −

(
p1

p0

)(γ−1)/γ
)

= 2
γ

γ − 1

p0

ρ0

(
1 − T1

T0

)
(4)

By the way, the velocity can be expressed in Mach number as following[8]:

u2
1 = a2

1M2
1 = M2

1
γ RT1

Mw
(5)

whereM is Mach number,Mw the molecular weight of gas,γ the specific heat ratio of gas,
andR is the gas constant. Substituting above equations intoEq. (4)and using the perfect
gas law, we obtain the temperature and the pressure:

T1 = T0

(
2

(γ − 1)M2
1 + 2

)
(6)

p1 = p0

(
2

(γ − 1)M2
1 + 2

)γ /(γ−1)

(7)

Mass flow rate through the nozzle can be calculated by usingEq. (5):

Qn = πd2

4
ρ1M1

√
γ RT1

Mw
= πd2

4
M1

√
γρ1p1 (8)

whered is the diameter of pipeline andQn is the mass rate of the flow leaving the reservoir.

2.2. Flow rate through pipeline

Flow rate through the pipeline can be estimated from the momentum equation with a
term accounting for the frictional forces acting on the fluid.

By applying the momentum balance for steady-state flow, following equation is written
[10]:

−δp − τf
4

d
δL = ρu δu (9)

whereτ f is the shear stress due to the wall friction andL is the length of pipeline.
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Divided by the pressure,Eq. (9)will be rearranged with Fanning friction factor:

−δp

p
− fFρu2 2

pd
δL = ρu

p
δu (10)

where

fF = τf

0.5ρu2

In the zone of completely rough flow, Fanning friction factor does not depend on Reynolds
number, and can be given explicitly as the following equation[11]:

fF = 1

4[1.14− 2.0 log(ε/d)]2
,

ε

d
� 9.35

Re
√

4fF
(11)

whereRe is Reynolds number andε is the average roughness of pipe. Typical value of the
roughness is 46�m for the commercial steel pipes.

It is desirable to integrateEq. (10)to obtain, for example, an expression for Mach number
and the pressure change over a given pipeline length. To get Mach number (M) in terms
of the pipeline length (L), the pressure (p) and the gas velocity (u) are to be eliminated by
using the continuity equation, the perfect gas law, and the definition of Mach number as
below.

The continuity equation is written as below:

δρ

ρ
+ δu

u
= 0 (12)

By the perfect gas law andEq. (12), the pressure term is given as

δp

p
= −δu

u
+ δT

T
(13)

By the definition of Mach number, the velocity term is derived with perfect gas law:

δu

u
= δM

M
+ 1

2

δT

T
(14)

Substituting above equations intoEq. (10), we obtain the next equation:(
1

2

δT

T
− δM

M

)
+ 2γM2fF

δL

d
+ γM2

(
δM

M
+ 1

2

δT

T

)
= 0 (15)

For adiabatic flow, the temperature term may be expressed in Mach number:

h + Mw
u2

2
= cpT + M2

2
γ RT = constant

or
δT

T
+ (γ − 1)M δM

1 + ((γ − 1)/2)M2
= 0 (16)

whereh is the enthalpy of gas andcp is the specific heat capacity of gas at the constant
pressure.
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By substitutingEq. (16)into Eq. (15), an expression for Mach number varying over a
given pipeline length is given as below:

4fFγ δL

d
= 2δM

M3

[
1 − M2

1 + ((γ − 1)/2)M2

]
(17)

Eq. (17)can be integrated now along the pipeline from the state 1 to the state 2 as indicated
in Fig. 1:

4fFγL

d
=
(

1

M2
1

− 1

M2
2

)
+ γ + 1

2
ln

[
M2

1(2 + M2
2(γ − 1))

M2
2(2 + M2

1(γ − 1))

]
(18)

where the subscript 2 denotes the properties in the pipe just before leaving to the atmosphere.
The temperature at the state 2 can be found fromEq. (16)in terms of Mach number:

T2

T1
= 2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

(19)

Pressure versus Mach number can be also found fromEq. (10) by eliminating L
andu:

δp

p
= −δM

M

[
1 + (γ − 1)M2

1 + ((γ − 1)/2)M2

]
(20)

Integration between the limitsp1 andp2 gives the following:

p2

p1
= M1

M2

√
2 + (γ − 1)M2

1

2 + (γ − 1)M2
2

(21)

Mass flow rate through the pipe can be calculated, likewiseEq. (8), as following:

Qp = πd2

4
M2

√
γρ2p2 = ApM2p2

√
γMw

RT2
(22)

whereAp is the cross-sectional area of pipeline andρ2 is the density of gas at the state 2
which can be calculated by the perfect gas law usingEqs. (6), (7), (19) and (21).

2.3. Flow rate through hole

For the perfect gas with the constant specific heat capacity, mass flow rate from the hole
can be expressed in terms of the stagnation pressure and temperature:

Qh = AhCDM3p3

√
γMw

RT3

= AhCDM3p2t

√√√√γMw

RT2t

(
2

(γ − 1)M2
3 + 2

)(γ+1)/(γ−1)

(23)
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where

T3 = T2t

(
2

(γ − 1)M2
3 + 2

)

p3 = p2t

(
2

(γ − 1)M2
3 + 2

)γ /(γ−1)

where the subscript t represents the stagnation properties and the subscript 3 denotes the
properties just after leaving from the pipeline to the atmosphere, whileAh is the hole area
andCD is the discharge coefficient. The stagnation properties at state 2 are of the same
value as those at state 3, because of no friction loss assumed at the hole as shown in
Fig. 2. In case of a full-bore rupture, the mass flow rate can be estimated by assuming the
discharge coefficient as the unity (1) and the cross-sectional area of pipe for the hole area
[12].

By the mass balance between the states 2 and 3, which are shown inFig. 1, Mach number
at the state 2 can be solved by the following equation:

α = M2

M3

p2

p3

√
T3

T2
= M2

M3

[
(γ − 1)M2

3 + 2

(γ − 1)M2
2 + 2

](γ+1)/(2γ−2)

(24)

whereα is the dimensionless hole-size which is the effective hole area (AhCD) divided by
the cross-sectional area of the pipe (Ap).

If the flow is choked at the hole, i.e.M3 equals 1, Mach number at the state 2 can be
simplified as the following equation:

α = M2

[
γ + 1

(γ − 1)M2
2 + 2

](γ+1)/(2γ−2)

(25)

The mass release rate can be solved by solving the Mach number from the state 3 back-
wards to state 1 usingEqs. (25) and (18), and solving the nozzle flow rate usingEqs. (6)–(8).

3. Simplified model

Total pressure drop is equal to the sum of the pressure drop over the pipeline and the
pressure drop due to the isentropic expansion. The gas release rate may be estimated by
calculating the stagnation pressure drop along the pipeline and the isentropic expansion
at the hole as shown inFig. 2. Pressure drop for the stationary flow in a pipeline can
be estimated by well-known Fanning equation. However, Fanning equation does not ac-
count for the effect of the pressure drop due to the density change of gas, which conse-
quently will be expanded. By Fanning relation is given the local pressure drop along the
pipeline:

δp

δL
= −4fF

ρu2

2d
(26)
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wherep is the pressure inside the pipeline,L the length of pipeline,fF the Fanning friction
factor which is a function of the roughness of the inside wall and Reynolds number,ρ the
gas density,u the gas velocity, andd is the pipeline diameter.

Gas velocity is determined by the mass flow rate in the pipeline:

u = 4
Q

ρπd2
(27)

With the gas velocity being substituted,Eq. (26)can be integrated as shown below:∫ p2t

p0

ρ δp = −32
fFLQ2

π2d5
(28)

By integratingEq. (28)with Eq. (2), the mass flow rate through a pipe can be given approx-
imately as a function of the pressure, the diameter of the pipe, and the pipeline length:

Qp ∼= πd2

4

√√√√ρ0p0d

2fFL

(
γ

γ + 1

)(
1 −

(
p2t

p0

)(γ+1)/γ
)

(29)

The relations between the mass flow rate and the pressure drop due to the free expansion
at the hole can be solved by usingEq. (23):

Qh = AhCDM3

√√√√
γρ2tp2t

[
2

(γ − 1)M2
3 + 2

](γ+1)/(γ−1)

∼= πd2

4
M3α

√√√√
γρ0

(
p2t

p0

)1/γ

p2t

[
2

(γ − 1)M2
3 + 2

](γ+1)/(γ−1)

(30)

whereα is dimensionless hole-size which is the effective area of the hole divided by the
cross-sectional area of pipe (AhCD/Ap). The density at the state 2 is approximated by as-
suming the isentropic expansion through pipeline.

By the mass conservation, the mass flow rate through the pipeline calculated byEq. (29)
is equal to the mass flow rate at the hole calculated byEq. (30). The stagnation pressure at
the state 2 is given below:

p2t = p0

(
1

η + 1

)γ /(γ+1)

(31)

where

η = α2M2
3

2fFL

d
(γ + 1)

(
2

(γ − 1)M2
3 + 2

)(γ+1)/(γ−1)

If the stagnation pressure at the state 2 is greater than the critical pressure, Mach number at
the holeM3 is unity, andEq. (30)can be simplified as following:

Q= ((πd2α)/4)
√

γρ0p0(2/(γ +1))(γ+1)/(γ−1)√
1+((4α2fFL)/d)(2/(γ +1))2/(γ−1)

, for
pa

p2t
≤
(

2

γ − 1

)γ /(γ−1)

(32)
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wherepa is the atmospheric pressure andp2t is the stagnation pressure at the state 2 as
indicated inFig. 2.

The mass release rate can be made dimensionless as well as the pipeline length scaled
with the friction factor:

Q̄ = Q

Q|L=0
= Q

((πd2α)/4)

√
γρ0p0

[
2/(γ + 1)

](γ+1)/(γ−1)
(33)

L̄ = fFL

d
(34)

The dimensionless release rate is rewritten in a simpler form:

Q̄ = 1√
1 + 4α2L̄[2/(γ + 1)]2/(γ−1)

(35)

The flow rate,Q|L=0, is the same as the release rate without friction loss through the
pipeline. The dimensionless release rate depends on the specific heat ratio, the dimensionless
hole-size, and the dimensionless pipeline length. Ifα2L̄ in Eq. (35)is several times greater
than the unity, the dimensionless release rate is inversely proportional to the dimensionless
hole-size and the square root of the dimensionless pipeline length.

4. Calculations and discussion

The dimensionless release rate decreases sharply with the dimensionless pipeline length
especially near the gas reservoir, but it is influenced slightly with the varying specific heat
ratio as shown inFigs. 3 and 4.

As discussed in the previous section, the simplified model has some deviation from
the theoretical solution due to the isentropic expansion assumed to calculate the density
of gas and the stagnation pressure, which are used in turn to estimate the pressure drop
through the pipeline. The simplified model always overestimates the release rate as shown
in Fig. 5. The deviation has the maximum with the dimensionless pipeline length as shown
in Figs. 6 and 7. The maximum takes larger value as the specific heat ratio gets higher
and as the dimensionless hole-size gets bigger. It shifts nearer toward the reservoir as the
dimensionless hole-size gets bigger.

The specific heat ratio is bound from 1.0 to 1.67 for gases. When translational energy is
assumed to make up internal energy like as a monoatomic gas, the classical thermodynamics
allows us to predict the heat capacity as following[13]:

cv = 3
2R (36)

With the ideal gas relation, the specific heat ratio can be evaluated:

γ = 1 + R

cv

= 1.67 (37)

For a diatomic molecule, the total internal energy is 5/2kT at the low temperatures, that is,
3/2kT in the translational energy and 2/2kT in the rotational energy. The specific heat ratio
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Fig. 3. Release rate varying with the dimensionless length (γ = 1.42).

of the diatomic molecule at the low temperatures is about 1.4. However, as the temperature
gets higher, the total internal energy approaches to 7/2kT by adding the vibrational energy,
2/2kT, and the specific heat ratio will be 1.23. For some typical gases in the chemical process,
the value of the specific heat ratio ranges from 1.1 to 1.5[14]. Therefore, whatever kind of
gas gushes out through a full-bore rupture, the error involved in the simplified model ranges
from 8.0 to 20% as shown inFig. 7, if the release point is not too close to the reservoir.

Fig. 4. Release rate varying with the specific heat ratio.
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Fig. 5. Release rate by the simple model and by the theoretical equations.

The hazard distance from the gas facilities may be affected directly by the release rate.
Cloud size of hazardous gas is at first approximation proportional to release rate, when only
the gas dispersion is considered[15]. However, based on the heat radiation from a jet fire
of flammable gas, the hazard distance appears to be proportional to the square root of the
release rate[6]:

r ∝
√

Q (38)

Fig. 6. Deviation from the theoretical equations (γ = 1.42).
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Fig. 7. Deviation from the theoretical equations for full-bore rupture.

Beyond the radial distance,r, from the flame source, a typical wooden structure would not
be expected to ignite and burn. The radiation intensity needed to ignite the wood is about
15 kW/m2 [16].

Consequences of the real accidents associated with the natural gas pipeline are listed in
Table 1. The source of jet flame is not always located in the center of the burned area. The
location depends on the tilt of jet flame and the meteorological condition. In the credible
worst case, the center may be located on the periphery of the burned area.

With the specific heat ratio of the natural gas at room temperature (γ = 1.42) and with
the average roughness of steel pipeline (ε = 46�m), the hazard distance from the failure

Table 1
Accidents of the natural gas transmission pipeline

Accident
number

Diameter of
pipeline (m)

Operating
pressure (bar)

Length of
pipeline (km)

Failure
mode

1 0.762 51.5 24.5 Rupture
2 0.762 70.7 29 Rupture
3 0.508 55.0 18 Rupture
4 0.700 67.5 18 Rupture
5 0.355 56.5 16.6 Rupture
6 0.914 68.95 44 Rupture
7 0.610 54.6 12.8 Rupture

Sources of data: (1) The National Technical Information Service (Report N. PB 244-547); (2) The National
Technical Information Service (Report N. PB 87-916501); (3) The National Technical Information Service (Report
N. PB 268-606); (4) The State Government on behalf of the Committee for Economics and Transport of the
Bavarian Diet (Erlangen, Bavaria, 25 March 1984); (5) The National Technical Information Service (Report
N. PB 202868); (6)http://www.bst-tsb.gc.ca/eng/reports/pipe/1994/ep94h0036.html; (7) The National Technical
Information Service (Report N. PB 95-916501).

http://www.bst-tsb.gc.ca/eng/reports/pipe/1994/ep94h0036.html
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point of the gas transmission pipeline associated with the jet fire can be estimated from the
following equation[6]:

r = 10.285
√

Q (39)

Compared with the theoretical equations, therefore, the hazard distance is over-predicted
from as much as 3.9 to 20% with the simplified release model. The simplified model may
be used for the hazard analysis, calculating conservatively the released rate. If the second
term in the square root of the denominator inEq. (32)is several times higher than the unity,
the hazard distance may be estimated approximately as following:

r = 1.512
p

1/2
0 d5/4

L1/4
(40)

wherep0 is the stagnation pressure at the gas reservoir,d the pipe diameter andL is the
pipeline length.

According to the chronology of the accidents, ignition of the released gas takes place
from a few minutes to several hours after the pipeline rupture happened, and the jet fire
sustains for several hours. Therefore, the release rate during the sustained jet fire can be
calculated with the steady-state assumed as discussed above. The hazard distance estimated
by the above equations is compared with the area of burn in the actual accidents. The
hazard distance estimated by the above equations is slightly larger than the burned distance
in the real accidents as shown inTable 2. The deviation by the simplified model from the
theoretical complex equations is about 4% in the positive side. The error incurred from
using the simplified model may be acceptable for the hazard analysis of the natural gas
transmission pipeline.

A full scale experiment of the natural gas release following the rupture of the transmis-
sion loop pipeline was reported[17]. In the experiment, the loop line was ruptured by the
deliberate explosion. The pipeline is 76.74 km long and 914 mm wide of diameter, and op-
erating at the pressure of approximately 60 bar. Detonation of the explosive charge made a
section of pipe cut off as long as 12 m. During the first 60 s following the rupture, the total
mass of gas released was approximately 240 t, but at 5 min after the rupture, within which
the steady-state reached presumably, the release rate reduced to approximately 1.5 t/s. The

Table 2
Hazard distance by the model and burned area in the accidents

Accident number Hazard distance (m) Area of burn

Theoretical equations Simplified modela

1 186 194 213× 122 (m2)
2 209 218 213× 152 (m2)
3 123 128 36,421 (m2)
4 206 215 200 radius (m)
5 80 83 108× 74 (m2)
6 235 245 178 radius (m)
7 168 176 55,850 (m2)

a UsingEq. (40).
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gas gushed out from the burst bore sections located 31.35 km away from one end of the
loop and 44.89 km away from the other end. With the above equations, the release rate just
after the rupture can be calculated as 14.2 t/s by taking zero length of the pipeline. The
steady-state rate is estimated to be 0.985 t/s by the theoretical equations or 1.072 t/s by the
simplified model. The release rate may slow down rapidly from 14.2 to about 1 t/s with
time. The experimental value in the 5 min after the rupture might has reached to about 96%
of the predicted value from the model.

The mass release rate, for the hazard analysis associated with the gas transmission
pipeline, can be explicitly estimated by using the simplified model above. The dimen-
sionless release rate (Q̄) could be seen as a kind of correction factor accounting for the
friction loss through the pipeline. Therefore, the release rate can be calculated by multi-
plying the dimensionless release rate given byEq. (35)and the mass release rate without
friction loss through the pipeline calculated withL = 0 in Eq. (32).

5. Conclusions

Estimation of the gas release rate from the ruptured pipeline is very important for the
hazard analysis of possible release scenarios that can happen at the given gas facilities. A
simplified model has been derived to estimate the release rate from a hole at the high-pressure
gas pipeline. It consists of a correction factor (Q̄) for the pressure drop through the pipeline
due to the friction loss and the release rate from a hole without friction loss (Q|L=0). The
model has some positive deviation from the theoretical equations, which ranges from about
8 up to 20% for the full-bore rupture, whatever kind of gas may be considered, if the release
point is not too close to the reservoir. The deviation increases with the specific heat ratio of
gas and the effective hole-size divided by the pipe diameter.

Estimated by the simplified model, the hazard distance, within which a typical wooden
structure may ignite, is slightly wider than the maximum width of burned area in the real
accidents of the natural gas transmission pipeline. The deviation by the simplified model
from the theoretical complex equations is about 4% in the positive side, and it may be
acceptable for the hazard analysis of the natural gas transmission pipeline.

The model will be a useful tool to estimate the release rate quickly for the hazard analysis
or the risk based management in the gas facilities.
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